Definition
the union of all faces of Δ^{n} is the BOUNDARY of Δ^{n}, written $\partial \Delta^{n}$ the OPEN SIMPIEX $\dot{\Delta}^{\circ}$ is $\Delta^{n}-\partial \Delta^{n}$, the interior of Δ^{n}
Gluing simplices together in a principled way giebls a \triangle-COMPLEX.
Definition
A \triangle-COMPLEX STRUCTURE on a space X is a collection of maps $\sigma_{\alpha}: \Delta^{n} \rightarrow x$, with n depending on the index α, such that:
(i) The restriction $\left.\sigma_{\alpha}\right|_{\Delta n}$ is infective, and each point of X is in the image of exactly one such restriction $\left.\sigma_{\alpha}\right|_{\Delta^{n}}$
(ii) Each restriction of σ_{α} to a face of Δ^{n} is one of the maps $\sigma_{\beta}: \Delta^{n-1} \rightarrow x$. Here we are identifying the face of Δ^{n} with Δ^{n-1} by the canonical linear homeomorphisen between them that preserves the ordering of the vertices.
(iii) A set $A C X$ is open \Leftrightarrow
$\sigma_{\alpha}^{-1}(A)$ is open in Δ^{n} for each b_{α}.

9 rules out trivialities
like regarding all the points as individual vertices

One consequence of $(i i i)$ is that X can be built as a quotient space of a collection of disjoint simplices inductively: start with a discrete set of vertices, attach edges to produce graphs, attach triangle or 2 -simplics, etc.
SIMPLICIAL HOMOLOGY
Definition
Let $\Delta_{n}(x)$ bethe free abelian group with basis the open n-simplices e_{α}^{n} of x.
Elements of $\Delta_{n}(x)$ are called n-chains and can be
witter as finite formal sums $\sum_{\alpha} n_{\alpha} e_{\alpha}^{n}$ with coefficients
$n_{\alpha} \in \mathbb{Z}$. Equivalently, we could unite $\sum_{\alpha} n_{\alpha} \sigma_{\alpha}$ where $\sigma_{\alpha} \Delta^{n} \rightarrow x$ is the characteristic map of e_{α}^{n}, with image the closure of e_{α}^{n}.
Example

$$
\left[v_{0}, v_{1}\right]+\left[v_{1}, v_{2}\right]+\left[\left[_{0}, v_{2}\right]\right.
$$

is a 1-chain.
a 2-chain $2\left[v_{0}, r_{1}, v_{2}\right]$ is a 2 -chain
the boundary of this 2-simplex consists of 1 -simplices $\left.\left[V_{0}, v_{1}\right]_{1}\left[V_{1}, V_{2}\right], V_{0,2} V_{2}\right]$ We might say that the boundary of f is the 1-chain formed by the sum of the faces $\left[v_{0}, v_{1}\right],\left[v_{1}, v_{2}\right]$, $\left[v_{0}, v_{2}\right]$ however, are must take orientations into account.
Definition
the BOUNDARY HIOMOMORPHISM

$$
\partial_{n}: \Delta_{n}(x) \rightarrow \Delta_{n-1}(x)
$$

to specified on basis elements

$$
\left.\partial_{n}\left(\sigma_{\alpha}\right)=\left.\sum_{i}(-1)^{i} \sigma_{\alpha}\right|_{\left[v_{0}, \hat{V}_{i}, v_{n}\right]}\right]
$$

this is well-defined since each restriction $G_{\alpha} \mid\left[v_{0}, \ldots, v_{i}, \ldots, v_{n}\right]$

Examples
is the characteristic map of an $(n-1)$-simplex

$$
{ }_{2}^{\partial}\left[V_{0}, V_{1}, V_{2}\right]=\left[V_{1}, V_{2}\right]-\left[V_{0}, V_{2}\right]+\left[V_{0}, V_{1}\right]
$$

$$
\begin{aligned}
& \partial_{3}\left[V_{0}, V_{2}, V_{2}, V_{3}\right]=\left[V_{1}, V_{2}, V_{3}\right] \\
& -\left[V_{0}, V_{2}, V_{3}\right]+\left[V_{0}, V_{1}, V_{3}\right] \\
& - \\
& -\left[V_{0}, V_{1}, V_{2}\right]
\end{aligned}
$$

V 1

$$
\left[V_{0}, V_{2}, V_{1}\right]=-\left[V_{0}, V_{1}, V_{2}\right]
$$

Lemma
the composition $\Delta_{n}(x) \xrightarrow{\partial_{n}} \Delta_{n-1}(x)^{\partial_{n-1}} \Delta_{n-2}(x)$ is zero.
Proof
$\partial_{n}(\sigma)=\left.\sum_{i}(-1)^{i} \sigma\right|_{\left[v_{0}, \ldots, v_{j,}, v_{n}\right]}$, and hence

$$
\begin{aligned}
& \partial_{n-1} \partial_{n}(\sigma)=\partial_{n-1}\left(\left.\sum_{i}(-1)^{\prime} b\right|_{\left[b_{0}, i, v_{i} ; v_{n}\right]}\right) \\
& =\left.\sum_{i}(-1)^{i} \partial_{n-1} b\right|_{\left[\nabla_{0}, \ldots, \hat{v}_{i}, \cdots, v_{n}\right]}= \\
& =\sum_{i}(-1)^{i}\left(\left.\sum_{j<i}(-1)^{j} G\right|_{\left[v_{0,},\right.}, \hat{v}_{j,}, \hat{v}_{j}, v_{n}\right] \\
& \left.\left.+\left.\sum_{j>i}(-1)^{j-1} \sigma\right|_{\left[v_{p}, ., v_{i}, \ldots, v_{j}\right.}, v_{n}\right]\right) \\
& =\left.\sum_{i} \sum_{j<i}(-1)^{i+j} b\right|_{\left.\left[v_{0}, i, v_{j},-\hat{v}_{i}, j\right) v_{n}\right]} \\
& +\sum_{i} \sum_{j>i}(-1)^{i j-1} b\left[_{\left[v_{0}, \cdots, \hat{V}_{i j}, v_{j}, v_{n}\right]}\right.
\end{aligned}
$$

The latter two summations cancel
since after switching i\& j in the second sum, it becomes the negative of the first.
the algebraic situation we have now is a sequence of homomorphisms of abelian groups

$$
\begin{aligned}
& \text { delian groups } \\
& \ldots \rightarrow C_{n+1} \xrightarrow{\partial_{n+1}} C_{n} \rightarrow \ldots \rightarrow C_{\lambda} \xrightarrow{\partial_{n}} C_{0}^{\partial_{0}^{\prime \prime}} 0
\end{aligned}
$$

with $\partial_{n} \cdot \partial_{n+1}=0$ for each in Such a sequence is called a CHAIN COMPLEX. NOTATION (C, ∂_{0}) The equation $\partial_{n} \partial_{n+1}=0$ is equivalent to the inclusion $\operatorname{lm} \partial_{n+1} c k e n \partial_{n}$, where

In ∂_{n+1} denotes the image of ∂_{n+1} \& ken ∂_{n} the kennel of ∂_{n}
Definition
Let (C, ∂_{0}) be a chain complex,
The $n-t h$ homology group of (c., I.)

$$
H_{n}=\operatorname{ken} \partial_{n} / / m \partial_{n+1}
$$

Elements of $\operatorname{ker} \partial_{n}$ are called cycles and elements of lm ∂_{n+1} boundaries. Elements of H_{n} are closets of I $\mathrm{m} \partial_{n+1}$, called homology classes. Two cycles representing the same homology class are said to be homologous.

Definition
when $C_{n}=\Delta_{n}(x)$, the homology group kennan/ $/ m \partial_{n+1}$ is denoted
by $H_{n}^{\Delta}(x)$ and called the $n^{\text {th }}$ simplicial homology Intuition: $H_{n}(x)$ captures group of X. the information about n-dim holes in x.
Example 1 Homology groups of x

$$
\begin{aligned}
& \Delta_{0}(x)=\left\langle v_{0}, v_{1}, v_{2}, v_{3}, v_{4}\right\rangle \\
& \Delta_{1}(x)=\left\langle\left[v_{0}, v_{2}\right], v_{0}, v_{4}\right], \\
& {\left[v_{0}, v_{3}\right],\left[v_{1}, v_{2}\right],\left[v_{1}, v_{4}\right],} \\
& \left.\left[v_{3}, v_{u}\right]\right\rangle \\
& \Delta_{2}(x)=\left\langle\left[v_{0}, v_{1}, v_{2}\right]\right\rangle
\end{aligned}
$$

$$
\left[v_{1}, v_{2}\right]-\left[v_{0}, v_{2}\right]+\left[v_{0}, v_{4}\right) \Delta_{3}(x)=0
$$

Chain complex associated to x

$$
\begin{aligned}
\rightarrow 0 \rightarrow & \Delta_{2}(x) \xrightarrow{\partial_{2}} \Delta_{1}(x) \xrightarrow{\partial_{1}} \Delta_{0}(x) \xrightarrow{0} 0 \\
& \partial_{2}\left(\left[v_{0}, v_{1}, v_{2}\right)\right)= \\
& =\left[v_{1}, v_{2}\right]-\left[v_{0}, v_{2}\right)+\left[v_{0}, v_{1}\right]
\end{aligned}
$$

$K e \partial_{2}$ io trivial, so $H_{2}(x)=0$.
Also $H_{i}(x)=0$ for $i \geq 3$.

